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Inner shell atomic electrons that are tunnel ionized in multi-petawatt class laser

pulses are accelerated, in vacuum, to multi-GeV energies in the forward direction.

In extreme fields, tunnel ionized electrons can be brought to the speed of light so

abruptly, that they stay in the same phase of the laser field throughout significant

portions of the confocal region. An analysis of the acceleration process is given, and

relativistically covariant four-dimensional numerical calculations especially suited

for extreme fields are carried out. Radiation reaction is included, and the latest

relativistic tunneling ionization theories are used to spawn the simulated electrons.

An experimental configuration is suggested, utilizing the 10 petawatt ELI-NP laser,

and plasma lens assisted focusing.
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I. INTRODUCTION

This report concerns a mechanism of electron acceleration by free space electromagnetic

fields, wherein the electrons are supplied by the inner shell orbitals of moderately heavy

atoms. The process involves both relativistic tunneling ionization, and classical charged

particle dynamics in ultrarelativistic fields. With the imminent commissioning of the 10

petawatt (PW) beamlines at the ELI-NP facility [1], the proposed scheme promises to

advance the state of the art of free space acceleration of electrons by about 3 orders of

magnitude.

Acceleration of electrons by electromagnetic fields in free space has been investigated at

length over the years [2–8]. Free space acceleration is usefully framed in terms of the Lawson-

Woodward (LW) theorem [9], which, roughly speaking, states that upon linearizing the

forces, the net energy gain is zero. Conventional accelerators overcome LW by introducing a

metallic structure comparable in dimension to the wavelength of the electromagnetic field.

Schemes such as the inverse Cherenkov accelerator [2] overcome LW by performing the

acceleration in a gaseous medium (i.e., not in free space). Several schemes rely on the

ponderomotive force to supply a nonlinearity which overcomes LW [3, 5, 7]. In the case of

Laser Ionization and Ponderomotive Acceleration (LIPA) [5], an additional consideration

is that tunnel-ionized electrons are introduced into the high-field region abruptly, further

stressing the assumptions of LW. In the ultrarelativistic limit, the nonlinear forces cannot be

described ponderomotively, because of the possibility of a slow rate of phase slippage. This

is the basis of the “Capture and Accelerate Scenario” (CAS) [6], for which there is recent

experimental evidence [8].

This report analyzes and simulates LIPA in extreme fields (xLIPA). In the original LIPA

scheme, electrons originate from a tenuous gas of moderately heavy elements. Upon focusing

a high-intensity laser pulse into the gas, electrons are tunnel ionized and accelerated. It is

desirable in the LIPA scheme for the ionization potential to be matched to the laser power

and focusing such that the electrons are ionized only when they are exposed to the peak laser

intensity. Such electrons experience the highest ponderomotive potential, and therefore gain

the greatest energy (electrons ionized earlier in the pulse may be pushed out of the focus

before the peak of the pulse arrives). In the case of xLIPA, the ionization potential has

to be matched in a similar way, but the acceleration is no longer ponderomotive. Instead,
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electrons stripped from atoms with certain favorable initial positions are brought abruptly

to the speed of light and gain further energy as they stay in nearly the same phase of the

laser field for extended periods of time. This is essentially the acceleration mechanism of

CAS, except that the electrons are bound to a parent ion, and hence nearly immobile, until

the most intense portion of the laser pulses passes by. In practical terms, xLIPA accesses

the CAS regime without the need for a source of externally injected electrons, which is a

significant experimental advantage.

A schematic of the proposed experimental configuration is shown in Fig. 1. In considering

a 10 PW laser system, one confronts the practical issue that the final focusing optic is likely

to be a large, one-of-a-kind parabolic mirror, fixing the f-number for all experiments. To

increase the flexibility of the apparatus, a plasma lens [10–13] can be introduced. The plasma

lens can be positioned in regions where the laser intensity is high, and so does not have to

be particularly large. In fact, in the case of xLIPA, the plasma lens itself can provide the

ions from which electrons are stripped and accelerated. In particular, the parameters can be

arranged so that the beam waist occurs near the back surface of the lens, where a tenuous

plasma of partially ionized gas (say, argon) awaits further ionization by the focused laser

pulse. For sufficient focusing strength, the K-shell electrons are tunnel ionized and brought

to GeV energies. Apart from flexibility, the plasma lens offers three additional benefits.

First, it is likely that a plasma lens target counteracts the tendency of pre-pulses to increase

the waist size of the main pulse. Second, the plasma lens acts as an axially extended target

FIG. 1: Schematic xLIPA Configuration. The plasma lens is both the final focusing element and

the target. It serves to (i) provide flexibility in focusing conditions, (ii) decrease sensitivity to

pre-pulses and pointing stability, and (iii) provide an optimal configuration of ions from which

xLIPA electrons are extracted.
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with focusing properties throughout, which reduces sensitivity to errors in the position of the

vacuum focus. Finally, as will be seen below, the highest energy xLIPA electrons originate

off-axis, and therefore a target with an on-axis density minimum leads to a more favorable

final energy distribution.

II. ANALYSIS OF THE ULTRA-RELATIVISTIC CASE

There is an exact solution for the motion of a charged particle in any radiation field of the

form Fµν(kµx
µ), where kµ is the four dimensional wavevector of the radiation, and xµ is the

spacetime coordinate. Without loss of generality, let k1 = k2 = 0. Then u0−u3 is invariant,

where uµ is the four dimensional velocity of the particle1. Combining this with the identity

uµu
µ = 1, one can show that in the high energy limit u3 � {u1, u2}. In other words,

the particle moves predominatly in the “forward” direction, i.e., parallel to the radiation

wavevector.

The following analysis is based on the expectation that in extreme laser fields, an inner

shell electron that is tunnel-ionized, is accelerated abruptly to the speed of light. Then, ac-

cording to the foregoing discussion, the direction of motion is nearly parallel to the wavevec-

tor of the radiation, and the phase of the particle in the radiation field can be regarded

as constant. The primary constraint is that the interaction is limited to regions where the

irradiance is high and the phase velocity is close to c. This corresponds to the two regions

just outside the confocal region. That is, far from the confocal region the irradiance is too

low, but inside the confocal region the phase velocity is too high.

The exact equations of motion for a particle in a plane wave, written as matrix equations,

are
dx

ds
= cu (1)

du

ds
= Ωu (2)

Here, x(s) is the world line of the particle, u(s) is the four-velocity, and Ω = a(s)ωF . The

parameter s is the proper time, a(s) = qE(s)/mcω, E(s) is the electric field, q is the charge

of the particle, m is the mass, and ω is the frequency of the radiation. Using the coordinate

1 In particular, u = (γ, γβ1, γβ2, γβ3), where cβi are the components of the three dimensional velocity, and
γ = (1− β2)−1/2

3



system described above, the matrix F is

F =


0 1 0 0

1 0 0 −1

0 0 0 0

0 1 0 0

 (3)

As long as the particle stays in phase, Ω can be regarded as constant, and the solution of

the velocity equation is

u(s) = eΩsu(0) (4)

The matrix exponential eΩs is easily calculated due to the nilpotency of F , i.e., F 3 = 0. The

result is

Λ(s) ≡ eΩs =


1 + σ2/2 σ 0 −σ2/2

σ 1 0 −σ

0 0 1 0

σ2/2 σ 0 1− σ2/2

 (5)

where σ(s) = aωs. It is easily verified that Λ is a Lorentz transformation, i.e., ΛTgΛ = g,

where T indicates the transpose, and g = diag(1,−1,−1,−1). Of particular interest is the

initial condition u(0) = (1, 0, 0, 0)T , which according to most theories holds for an electron

at the moment of ionization, at least when the atomic number satisfies Z � 137. In this

case,

u(s) =


1 + σ2/2

σ

0

σ2/2

 (6)

Note that the invariant u0−u3 is maintained. Moreover, when σ = aωs� 1 the momentum

is predominantly in the forward direction, i.e., u3 � u1. Assuming a� 1, this requires that

ωs be at least of order unity, i.e., the time elapsed according to a clock moving with the

particle should read at least one laser period, as measured by a lab frame clock. This does

not necessarily violate the assumption that the particle should stay in phase, since the two

clocks may keep very different time.

Since the Rayleigh length characterizes the interaction length, which is expressed in terms
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of x3, it is useful to put s in terms of x3. These are related by

x3 = c

∫
u3(s)ds =

c

6
a2ω2s3 (7)

Defining k = ω/c gives

s =
(6x3)1/3

c(ak)2/3
(8)

Then the energy of the particle is

u0(x3) = 1 +
1

2
(6akx3)2/3 (9)

Here, it is understood that the spacetime origin is chosen so that x3 = 0 at the moment

of ionization. Finally, the highest possible energy is estimated by substituting the Rayleigh

length for x3, i.e., x3 → πr2
0/λ, where r0 is the radius of the beam waist, and λ = 2π/k.

This gives

u0,max = 1 +
1

2

(πr0

λ

)4/3

(12a)2/3 (10)

or

u0,max ≈ 12
(r0

λ

)4/3

a2/3 (11)

As an example, a 10 PW laser pulse, with λ = 0.8 µm, focused to r0 = 5 µm, gives a ≈ 100,

and u0,maxmc
2 ≈ 1.5 GeV. The question of how to match the ionization potential of the ion

to the laser parameters, so that the electron becomes free at the optimal time, is addressed

below.

III. NUMERICAL SIMULATIONS

The primary observable in an xLIPA configuration is the electron momentum distribution.

Under the assumption that the electrons are drawn from a gas whose density is low enough

so that plasma effects are negligible, the momentum distribution can be obtained by single

particle tracking methods. In the case of extreme fields, obtaining an accurate numerical

solution to the equation of motion is non-trivial. The methods used in this work are detailed

in section IV. In addition to integrating the equation of motion, the calculation has to

account for tunneling ionization. For this purpose, an analytical rate law is needed. In this

work, the Coulomb-corrected, dressed strong field approximation (SFA) of Klaiber et al.

[14] is used. The particle tracking code used here also allows the exact Landau and Lifshitz
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radiation reaction formula to be incorporated into the integration. It is found that at the 10

PW level this effect is very minor. An example based on more speculative laser parameters

is given where the effect is noticeable.

A. Choice of Ionic Species and Ionization Thresholds

As is well known, the rate of tunneling ionization as a function of the electric field is

exponential, so that the concept of a threshold field is applicable. The threshold for a

given ionization potential determines where in the laser focus a free electron first appears.

The ionization potential that leads to the highest energy electrons has to be calculated by

performing a series of numerical experiments for a given laser power and focusing configu-

ration. One expects that there is a finite optimum, for a threshold that is too high restricts

the starting coordinate to a small region near the focus, while one that is too low restricts

the starting coordinate to a region far from the focus, where the fields are too small to

accelerate electrons in the forward direction before ejecting them radially.

One useful estimate for the threshold field is the one due to Augst [15], which is based

on a simple barrier suppression picture, and is in reasonable agreement with experimental

data. An alternative threshold based on the relativistic, Coulomb-corrected SFA (or any

rate law) can be derived as follows. Let the rate be given as some function w(Ui, E0), where

Ui is the ionization potential, and E0 is the peak electric field of the applied laser pulse.

The threshold field is that value of E0 which satisfies w(Ui, E0) = ω/2π, where ω is the

laser frequency. Note that since the dependence of the left hand side on E0 is generally

exponential, the result only depends logarithmically on the choice of time scale appearing

on the right hand side.

Ionization thresholds for various ions are displayed in Table I based on the dressed

Coulomb-corrected SFA [14]. The charge states displayed are selected based on their status

as the highest charge states for a given set of non-empty shells, e.g., Ar7+ is the highest ar-

gon charge state that still has an electron in the M shell. When the atom is first exposed to

the laser radiation, electrons are expected to be stripped sequentially, in order of increasing

ionization potential. Therefore the potentials used at each stage are assumed to be those

appropriate for an ion in the lowest energy state. It should be noted that the SFA rate

law is strictly valid only for hydrogen-like ions. In addition to the intensity threshold, the
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TABLE I: Tunneling Ionization Threshold for Ions of Interest

Ion Potential (eV) Occ. Shells SFA Thresholda (W/cm2) athresh
0 (λ = 800 nm)

Ar7+ 143 KLM 1.4× 1017 0.26

Ar15+ 918 KL 2.7× 1019 3.57

Ar17+ 4426 K 2.4× 1021 33.6

Ti21+ 6628 K 7.6× 1021 59.8

Fe25+ 9278 K 2.0× 1022 96.9

Kr35+ 17948 K 1.3× 1023 250

Xe53+ 41347 K 1.5× 1024 834

Au78+ 93459 K 1.6× 1025 2740

U91+ 132280 K 4.5× 1025 4570

aThe static field rate is used to estimate the threshold. Cycle averaging increases the threshold by ≈ 25%.

corresponding peak normalized vector potential, a0, is displayed. The parameter a0 is of

fundamental importance because the interaction becomes ultra-relativistic when a0 � 1.

The laser pulse format assumed throughout section III is a waist radius (1/e of the field)

of 5 µm, a pulse length (1/e of the field) of 20 fs, a wavelength of 0.8 µm, and a field

configuration consistent with the lowest order Hermite-Gaussian mode. Longitudinal field

components are chosen to be consistent with the Coulomb gauge (∇ · A = 0), including

a correction to account for finite pulse length. Two laser powers of primary interest are

considered: 10 PW giving a0 = 100, and 25 exawatts (EW) giving a0 = 5000. The lat-

ter stupendous laser power is chosen because it gives a remarkable signature of radiation

reaction. The former is chosen because it corresponds to the near-term ELI-NP parameters.

The effect of the ionization potential on the xLIPA distribution for the 10 PW case is

shown in Fig. 2. The ionization potentials used correspond to 5 different ionic species, Ar7+,

Ar15+, Ar17+, Ti21+, and Fe25+. The latter three ions are all hydrogen-like. Representative

particle orbits from the 5 cases are shown in Fig. 2(a), in the plane of energy and the

longitudinal coordinate, x3. The coordinate is raised to the 1/3 power in order to achieve the
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FIG. 2: Effect of ionization potential on electron acceleration for a0 = 100. Representative orbits

for ionization of 5 different ionic species are shown in (a), while the highest energy selected from

an initial distribution of 106 particles is shown in (b) as a function of ionization potential, for the

same 5 species.

effect of a logarithmic plot, while still allowing for a sign and a zero-crossing2. The lowest two

charge states, with the smallest ionization potentials, are seen to experience ponderomotive

acceleration, evidenced by the fast oscillations in energy superimposed on the overall energy

gain. The net energy gain is also much smaller than that of the higher charge states, and

the acceleration is terminated due to radial expulsion from the confocal region (not shown).

In contrast the three higher charge state species exhibit a large energy gain within a single

optical cycle, as evidenced by a steep initial slope devoid of any oscillatory features.

The anticipated peak in the maximum accelerated energy vs. ionization potential is

illustrated in Fig. 2(b). In order to produce the data, 106 particles are loaded into a uniform

distribution in a region sufficiently large to encompass the ionized volume. The particle

with the highest energy, evaluated far from the laser focus, is used to define the maximum

accelerated energy. In the case a0 = 100, with the assumed focusing conditions, hydrogen-

like argon turns out to be an optimal species.

2 Strictly this requires the ad-hoc relationship (−|x|)1/3 = −|x|1/3
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FIG. 3: Final distribution of electrons drawn from the K-shell of argon with 10 PW of laser power.

The momentum space distribution is shown in (a,b,c), and the angular-spectral distribution is

shown in (d). γβi is momentum normalized to mc, with laser polarization in the 1-direction and

central wavevector in the 3-direction. The color scale is logarithmic. The dashed line in (d) is the

curve on which all particles would lie in the plane-wave limit.

B. Electron Distributions at muliti-Petawatt Scale

Based on the forgoing discussion, the ions Ar16+ and Ar17+ (both with similar ionization

potentials) are of interest in terms of possible near-term ELI-NP experiments utilizing the

10 PW beamlines. In order to broadly characterize the outgoing electron distribution,

it is sufficient to uniformly load the ions of interest into a box encompassing the focal

volume. Then, by examining the correlation between final energy and initial position (or

other classical S-matrix projections), more favorable distributions can be identified. In an

experiment, there is no need to pre-form Ar16+ or Ar17+ in the focal volume. So long as

any lower charge state of argon is present, and provided the main 10 PW pulse comes to

a suitable focus, all higher charge states will be sequentially produced as the applied field

increases. The use of a plasma lens to assist the focusing is addressed in section V.
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FIG. 4: Classical S-matrix projections for xLIPA electrons in the 10 PW case. The vertical axes are

the final particle energies and the horizontal axes are the initial positions xi, with laser polarization

in the 1-direction and central wavevector in the 3-direction. High energies are encouraged by

increasing the ion density near the two positions (x1, x2, x3) ≈ (±7, 0,−200) µm.

The electron distribution from a uniform background of Ar17+ is shown in Fig. 3. The

momentum distribution is given in the three possible two-dimensional momentum planes.

A strong preference for the polarization plane is indicated in Fig. 3(c), given that the color

scale is logarithmic. The angle-energy plane is a promising experimental observable. A

distinct population of high energy electrons can be seen around 1.5 GeV, at an angle of a

few milliradians with respect to the laser propagation axis. In a separate simulation with

the longitudinal field components artificially suppressed, the energy gain was about half that

obtained with the longitudinal fields included.

It is possible to optimize the electron energy distribution by controlling the initial spatial

distribution of the ions. In order to determine how to do this, a classical S-matrix is

computed by correlating the initial and final states of a large number of particles. Projections

of this S-matrix are shown in Fig. 4. In interpreting the figure, the limitations of two-

dimensional plotting have to be taken into account. The mapping between the initial spatial
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point (x1, x2, x3) and the final energy is much closer to one-one than can be gleaned by

inspection of any of the three projections. The only source of dispersion in the spectrum

of particles originating from a single spatial point is the variability in the phase at the

moment of ionization, which in turn is due to the fundamental statistical nature of quantum

mechanics.

The optimal distribution of ions, based on Fig. 4, is the pair of points (x1, x2, x3) ≈

(±7, 0,−200) µm. An approximation of this would be a ring with diameter 14 µm, centered

on the x3 axis, and upstream of the laser focus by 200 µm. A further approximation of this

would be a plasma lens, which has a natural density minimum on-axis, situated with the

laser focus slightly beyond the lens exit plane. Thus, as mentioned above, a plasma lens has

the fortuitous property of weighting the electron spectrum toward higher energies.

C. Electron Distributions at multi-Exawatt Scale

In this section, the focusing conditions are the same as in the 10 PW case discussed

above, but the laser power is increased to 25 EW. This gives a0 = 5000, which suggests,

based on Table I and Fig. 2, that the K-shell of gold is a suitable source of electrons in

this case. Although present day laser technology is far from producing 25 EW of power,

it is interesting to investigate how the xLIPA mechanism scales, and whether unambiguous

signatures of radiation reaction are obtained.

Consider first the case with radiation reaction neglected. The final electron distributions

at 25 EW, analagous to the 10 PW distributions of Fig. 3, are shown in Fig. 5. The most

obvious difference between the two cases is that the highest energy particles are on-axis, and

the highest energy is about 70 GeV rather than 2 GeV. Linear scaling with a0 would give

100 GeV, while the scaling of Eq. (11) would give 30 GeV.

The S-matrix projections at 25 EW, analagous to the 10 PW projections of Fig. 4, are

shown in Fig. 6. While there are some similarities, a notable difference is that some high

energy particles originate on-axis. This may be an indication that the simple plane wave

analysis of section II holds more closely in the 25 EW case.
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FIG. 5: Final distribution of electrons drawn from the K-shell of gold with 25 EW of laser power,

neglecting radiation reaction. The momentum space distribution is shown in (a,b,c), and the

angular-spectral distribution is shown in (d). γβi is momentum normalized to mc, with laser

polarization in the 1-direction and central wavevector in the 3-direction. The color scale is log-

arithmic. The dashed line in (d) is the curve on which all particles would lie in the plane-wave

limit.

D. Radiation Reaction

Radiation reaction (RR) is one of the few areas of classical electrodynamics that is still

lacking in experimental confirmation, mainly due to the lack of experimental facilities ca-

pable of accessing the radiation dominated regime. This issue has attracted significant

attention in recent years [16–21]. The xLIPA process is a candidate for experimental obser-

vation of RR. In particular, if one can show that the angle-energy distribution is affected in

a clear manner by RR, this might lead to a powerful confirmation, or denial, of the valid-

ity of the existing theories. The particle-tracking code used in this work has the option of

including the Landau and Lifshitz RR formula [22]. It reproduces very closely the results

reported in Ref. [21].
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FIG. 6: Classical S-matrix projections for xLIPA electrons in the 25 EW case, neglecting radiation

reaction. The vertical axes are the final particle energies and the horizontal axes are the initial

positions xi, with laser polarization in the 1-direction and central wavevector in the 3-direction.

The vertical feature at x1 = 0 in (a) is an artifact of the initial particle loading.

Before addressing the effect of RR on xLIPA, it is useful to consider the effect on the

well-known solution for the motion of an electron in a plane-wave. This is illustrated in

Fig. 7, for the case a0 = 1000. Figs. 7(a,c,e) show the orbits neglecting RR, as computed

by the particle-tracking code. The numerical error can be gauged by tracking the invariant,

Υ ≡ u0 − u3, which for the chosen initial conditions should be unity at all times. The

observed error is less than 1%. Figs. 7(b,d,f) show the same orbits, except that RR is

accounted for using the exact Landau and Lifshitz theory. The primary difference is that

the formerly invariant Υ decreases at each turning point in the electron motion. This is

consistent with expectations, since the turning points are where the acceleration, and hence

radiated power, are greatest. Interestingly, a close look at Fig. 7(d) shows that u3 reaches a

higher value during the second half-cycle of the motion compared with the first. This implies

that the energy also increases, since u0 = u3 + Υ, and Υ changes only slightly. Naturally,

energy need not be conserved in the presence of an external field.
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FIG. 7: Electron orbits in a plane wave without the reaction force (a,c,e) and with the exact

Landau and Lifshitz reaction force (b,d,f). Here Υ = u0 − u3, which is expected to be invariant in

the absence of radiation reaction.

Fig. 8 shows a set of multi-EW xLIPA distributions with RR included. These should be

compared with Fig. 5, which is an identical case with RR neglected. The overall effect of

RR is to narrow the distributions, and to make the cutoffs more abrupt. Considering the log

scale, Fig. 8(a) and (c) indicate that in the presence of RR, there are two fairly well defined

beamlets with u2 ≈ ±1000 and u3 ≈ 20000. In the absence of RR these features become

much more spread out in momentum space.

IV. NUMERICAL METHODS

The numerical model employed in this work incorporates a number of advances, includ-

ing a covariant particle pusher that respects Lorentz invariance to machine precision, and

elegantly incorporates radiation reaction and automatic time step adjustment. The ioniza-

tion model uses the latest relativistic theories, and confines the use of the random number

generator to the initial conditions. Finally, the implementation takes advantage of hardware

acceleration by means of general purpose graphical processing units.
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FIG. 8: Final distribution of electrons drawn from the K-shell of gold with 25 EW of laser power, in-

cluding radiation reaction. The momentum space distribution is shown in (a,b,c), and the angular-

spectral distribution is shown in (d). γβi is momentum normalized to mc, with laser polarization

in the 1-direction and central wavevector in the 3-direction. The color scale is logarithmic. The

dashed line in (d) is the curve on which all particles would lie in the plane-wave limit, in the

absence of RR.

A. Covariant Particle Pusher

The particle pusher calculates the world lines of particles introduced into the external

field. Countless authors have implemented schemes for this purpose. One of the most

commonly used schemes is the one introduced by Boris [23]. In carrying out simulations of

laser-particle interactions, one most often chooses a time step that is some fixed fraction of

the laser period. In the present case, this is not satisfactory because in the ultrarelativistic

limit, there are turning points where the characteristic time scale is a very small fraction

of the laser period. At the same time, one must propagate each particle to a point well

outside the confocal region. These two requirements introduce a large scale separation,

which demands some form of automatic time step adjustment. It turns out that this issue
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can be resolved elegantly by designing the pusher to operate in covariant fashion, i.e., to

push particles in proper time. In addition, a covariant particle pusher allows the exact

Landau and Lifshitz radiation reaction formula to be incorporated in a simple way.

As in the Boris pusher, we choose to leapfrog momentum and position, except that

these are now four-vectors, with the independent variable being proper time. The position

equation can be updated trivially using

x(s+ ∆s) = x(s) + cu(s+ ∆s/2)∆s (12)

where x and u are four-element column vectors. The matrix equation for the momentum is

du

ds
= Ω(s)u (13)

where

Ω(s) =
q

mc


0 Ex Ey Ez

Ex 0 Bx −By

Ey −Bx 0 Bz

Ez By −Bz 0

 (14)

Here, the fields E and B are considered functions of s. If they are prescribed as functions

of the spacetime coordinates, as is typical, then one uses, e.g., the functional composition

E(s) = E(x) ◦ x(s), where x(s) is the solution of (12). Clearly, any valid Ω must be the

generator of a Lorentz transformation, since uTu = 1 is an identity.

Assume that the time step ∆s is chosen to be small enough so that Ω is nearly constant.

Then

u(s+ ∆s) = Λ(s+ ∆s/2,∆s)u(s) (15)

where Λ(s,∆s) = eΩ(s)∆s. The matrix exponential of Ω is unwieldy, but can be greatly

simplified by performing a decomposition between electric and magnetic fields. In particular,

using the Campbell-Baker-Hausdorf expansion for the exponential of a sum, one obtains the

preliminary result

Λ = ΛEΛBΛE×B +O(∆s3) (16)

where ΛE is a boost, ΛB is a rotation, and ΛE×B is a boost that corrects for the fact that
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boosts and rotations do not commute. More specifically,

ΛE =


1− χ ψε1 ψε2 ψε3

ψε1 1− χε21 −ε1ε2χ −ε1ε3χ

ψε2 −ε1ε2χ 1− χε22 −ε2ε3χ

ψε3 −ε1ε3χ −ε2ε3χ 1− χε23

 (17)

where χ = 1− cosh β, ψ = sinh β, β = q|E|∆s/mc, and ε = E/|E|, and

ΛB =


1 0 0 0

0 1− χ̄(b2
2 + b2

3) b1b2χ̄+ b3ψ̄ b1b3χ̄− b2ψ̄

0 b1b2χ̄− b3ψ̄ 1− χ̄(b2
1 + b2

3) b2b3χ̄+ b1ψ̄

0 b1b3χ̄+ b2ψ̄ b2b3χ̄− b1ψ̄ 1− χ̄(b2
1 + b2

2)

 (18)

where χ̄ = 1 − cos θ, ψ̄ = sin θ, θ = q|B|∆s/mc, and b = B/|B|. The ΛE×B boost has

the same form as ΛE, with β = q2|E × B|∆s2/m2c2 and ε = E × B/|E × B|. However, it

turns out that the explicit application of the correction ΛE×B is not the most efficient way

to achieve convergence. Instead, one can split the step in a manner similar to the Boris

scheme to obtain

Λ(s,∆s) ≈ ΛE(s,∆s/2)ΛB(s,∆s)ΛE(s,∆s/2) (19)

Based on a range of numerical experiments, this is significantly more accurate than (16).

In summary, updating u is a matter of carrying out three explicitly given linear trans-

formations. The update is accurate to order ∆s2, and respects Lorentz invariance, i.e.,

ΛTgΛ = g, to machine precision. One caveat is that the unit vectors are ill-defined in a

field-free region. In practice, this is easily remedied, e.g., by superposition of a minuscule

uniform field with the field of interest.

B. Timestep Adjustment, Accuracy and Performance

A useful feature of a covariant particle pusher is that a constant time step (in proper

time) leads to a constant phase step for any particle in a plane wave. To see this, consider

the total derivative of the phase

dϕ

ds
=
d(kµx

µ)

ds
= kµ

dxµ

ds
= kµu

µ (20)
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According to the exact solution of the equations of motion, kµu
µ is invariant. Defining

Υ ≡ kµu
µ/ω, and demanding the that phase step ∆ϕ � 2π, one obtains the necessary

accuracy condition

∆s� 2π

ωΥ
(21)

which involves only invariant quantities. For a particle initially at rest, such as a tunnel

ionized electron, one has Υ = 1, so that the proper time step appropriate for a relativistic

particle is the same as the lab frame time step appropriate for a non-relativistic particle.

The reason for this is that the lab frame time step is longer than the proper time step by a

factor of γ, which is just the right factor to keep the phase step constant. It should be noted

that in cases where a laser pulse collides with an electron beam in a counter-propagating

geometry, Υ can be large, requiring ∆s to be correspondingly reduced.

The condition (21) alone is not sufficient to guarantee accuracy, because of the Campbell-

Baker-Hausdorf expansion of the matrix exponential. In order to estimate the time step

needed to justify truncation of the expansion, one may demand that ΛE×B should be nearer

the identity matrix than either ΛE or ΛB. Any of these matrices approach the identity

as the angle (whether appearing in the argument of a hyperbolic or ordinary trigonometric

function) vanishes. Therefore, demanding that the angle appearing in ΛE×B should be much

less than that appearing in ΛE or ΛB, provides the required accuracy condition. The overall

result is

∆s� min

(
2π

ωΥ
,
mc|E|
q|E×B|

,
mc|B|
q|E×B|

)
(22)

As in the case of advancing the particle momentum, one has an undefined floating point

operation in field-free regions. The remedy is again to add a minuscule uniform field

In practice it is convenient to have an expression for the timestep, ∆s, not involving con-

ditionals, and depending on a small number of dimensionless free parameters that quantify

the desired accuracy. A suitable expression that is used in this work is

∆s =

[
Ω2

(
ωΥ

2π

)2

+R2 q2

2m2

(
E2 +B2

)]−1/2

(23)

The dimensionless free parameters are Ω, and R, which can be thought of as frequency

multipliers. The multiplier Ω corresponds to the number of steps taken during one period

of the radiation field. The multiplier R accounts for the requirement due to non-commuting

boost and rotation operators.
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The effect of the parameter Ω is well known in connection with linear interactions, and

does not require further exposition. The conservative value Ω = 267 is used throughout

this work. Fig. 9 illustrates the accuracy of the pusher in the case of a plane wave field

with normalized vector potential a(t, z) = a0 sinω(z − t). In the given scenario, Υ = 1 is

invariant, so that a suitable error measure is |1−Υ|, which should vanish at all time levels.

The maximum value of the error measure during one period of the motion is shown as a

function of R, with a0 = 100, in Fig. 9(a). Two-digit accuracy is only obtained for R & 100.

Using a constant R = 1000 and varying a0 gives Fig. 9(b). In order to keep the accuracy

fixed, one has to keep R/a0 approximately fixed. Available computation time sometimes

dictates that higher accuracy is obtained for smaller a0. For the simulations discussed in

section III, we used R/a0 = 10 with a0 = 100, and R/a0 = 1 with a0 = 5000.

The covariant pusher described above is implemented as an OpenCL kernel. The perfor-

mance under various conditions, running on an AMD D700 GPGPU, is illustrated in Fig. 10.

The various points on the plot vary the number of particles involved in the calculation (hor-

izontal axis), the floating point precision, and the number of particle advances per OpenCL

kernel invocation. The latter parameter can be important because of the overhead involved

in invoking the kernel, and also because of the cost of moving data in and out of cache at

the beginning and end of the kernel invocation, respectively. In the best case, about 1.5 bil-

lion particles per second can be advanced, including field evaluations. The double precision

FIG. 9: Accuracy of covariant pusher, as measured by the maximum value of |1−Υ|, during one

period of the motion of the electron in a plane wave. The accuracy is displayed as (a) a function

of R, given a0 = 100, and (b) as a function of a0, given R = 1000. In all cases Ω = 267.
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performance is about 1/3 of this. The standard Boris pusher gives comparable performance.

C. Radiation Reaction

A major advantage of expressing the particle pusher in covariant fashion is that the

Lorentz-Abraham-Dirac (LAD) formula for the radiation reaction force takes the simple

form

R =
2q2

3mc

(
d2u

ds2
− uuTgd

2u

ds2

)
(24)

The Landau and Lifshitz (LL) formula is derived by substituting for d2u/ds2 the value ob-

tained in the absence of radiation reaction. In three dimensional notation, the LL formula

is extremely unwieldy, and even in four dimensional form, it appears to require expensive

evaulations of all spacetime derivatives of the field tensor. When the covariant pusher de-

scribed above is used, a simple and elegant alternative becomes readily available. Namely, by

splitting each step into two half-steps, d2u/ds2 can be evaluated by direct finite differencing.

That is, during each step generate

u(1) = Λ

(
s+

∆s

4
,
∆s

2

)
u(0) (25)

u(2) = Λ

(
s+

3∆s

4
,
∆s

2

)
u(1) (26)

FIG. 10: Performance of covariant pusher, in terms of millions of particles advanced per second,

including field evaluations. In the legend, SP means single precision, DP means double precision,

and s is the number of cycles advanced for each OpenCL kernel invocation.
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This requires field evaluations at only two spacetime points. Now, in the absence of radiation

reaction, u(0) = u(s), u(1) = u(s + ∆s/2), and u(2) = u(s + ∆s). The LL reaction force is

therefore given by the matrix equation

R =
2q2

3mc

(
δ2u− uuTgδ2u

)
(27)

where

δ2u =
u(2) − 2u(1) + u(0)

∆s2/4
(28)

is the finite difference form of d2u/ds2. The updated four-velocity, including the LL reaction

force, is

u(s+ ∆s) = u(2) +R∆s (29)

Here, a simple Euler advance is justified by the expectation that the reaction force is small.

D. Ionization Algorithm

In the context of a classical particle tracking calculation, an ionization algorithm amounts

to devising a rule for spawning a particle in the midst of the interaction. If the ion motion

is negligible on the time scale of the laser pulse, an equivalent view is that the ionization

algorithm provides a rule for abruptly changing the charge of a particle in the midst of the

interaction. In particular, the electron charge is changed from q = 0 to q = −e during one

time step.

In order to avoid calling a random number generator while integrating the equations of

motion (as is often done), we associate with each particle a constant parameter H, and an

evolving parameter η(t), which encode all the statistical information about the ionization

process. The condition for a particle to be ionized is η(t) > H. The parameter H appears

in the initial distribution function

g(x, p,H) = f(x, p)e−H (30)

where f(x, p) is the usual phase space distribution. Let

η(t) =

∫ t

−∞
w(t′)dt (31)

where w(t) is the ionization rate evaluated for a given particle, which has to be computed

using one of several available tunneling theories. These usually have the form

w(t) = C1E(t)C2 exp[−C3/E(t)] (32)
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where C1,2,3 are constants that depend on the ionization potential, and perhaps other fixed

parameters. Using the ionization condition η(t) > H, one obtains for the density of ionized

particles

n(x, t) =

∫
dp

∫ η(t)

0

g(x, p,H)dH (33)

where it is assumed the momentum of unionized particles is negligible. Carrying out the

integration,

n(x, t) = n0(x)
[
1− e−η(t)

]
(34)

where n0(x) is the initial density of unionized particles. Upon differentiation with respect

to time,
dn

dt
= w(t) [n0 − n(t)] (35)

which is the correct macroscopic ionization rate, under the stated assumptions.

V. NONLINEAR PROPAGATION IN A PLASMA LENS

A laser pulse propagating in plasma acquires a phase proportional to the plasma density.

Plasma with density variation imparts a spatially varying phase, causing the pulse to refract.

Thus with appropriate spatial structuring the plasma can, in principle, be made to mimic

any linear, solid-state optical element. Plasma-based optical elements, being already ionized,

have the advantage of higher damage thresholds, allowing their use at higher intensities than

solid-state elements. Furthermore, plasma optics can be cheaply and rapidly replaced, for

instance, at the rep-rate of a gas jet or capillary [24, 25], or flow rate of a water jet [26].

A plasma lens, in which the density profile of the plasma increases quadratically with

radius, can have enormous focusing power [11, 13]. For a density profile of the form ne =

n0 + 1
2
n′′0r

2, a short plasma lens imparts a quadratic phase analogous to the phase applied

by a thin lens. Specifically, φ = −i(2∆/k0w
4
m)r2, where ∆ is the lens thickness, k0 the pulse

wavenumber, wm = (2/πren
′′
0)1/4 describes the lens curvature, and re is the classical electron

radius. For an incident pulse with spot size w0 the effective f# = (1/8)(w2
m/∆w0)(k0wm)2

provided f# > (∆/2w0). As an example, we take λ = 2π/k0 = 800 nm, wm = 15 µm,

w0 = 250 µm and ∆ = 0.5 mm, and find f# = 3.1.

A thick plasma lens can be considered a truncated plasma waveguide [11, 27]. For the

density profile above, the plasma waveguide supports a transverse Gaussian mode of exp(-
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1) field radius wm. If w0 > wm, the pulse will undergo spot size oscillations, reaching a

minimum of wmin ≈ w0(wm/w0)2 after a distance z ≈ πk0w
2
m/4, with an effective f# =

(1/4)(wm/w0)k0wm. For the same parameters as above, we find f# = 1.8. For both thick

and thin plasma lenses well-established formation techniques can be employed. For instance

through the gas ionization, plasma heating, and hydrodynamic expansion driven by ≈ 100

ps Nd:YAG pulse focused onto a gas jet [24].

The plasma lens configurations described above are essentially truncated versions of the

plasma channels that have demonstrated laser propagation over many Rayleigh lengths

[25, 27], and have been employed in channel-guided laser wakefield accelerators [28]. At

moderate beam powers, the focusing in these plasma channel lenses is primarily determined

by the plasma density profile. At high beam powers, relativistic self-focusing enhances the

focusing effect. A thin uniform plasma slab acts as a focusing lens if the laser power is

above the critical power for relativistic self-focusing [10]. However, the focusing strength is

dependent on radial and axial variations in the pulse intensity, which produces substantial

aberrations that can significantly degrade the focusing quality.

Here we examine the use of a plasma lens to focus the 10 PW beamlines under construction

at ELI-NP. Currently ELI plans to have two optical paths ending with either an f# ≈ 3

or f# ≈ 20 parabolic mirror. A plasma lens placed within the target chamber would allow

added flexibility in the focal geometry. Additionally, the plasma lens could serve as a spatial

filter and help counteract any main pulse expansion resulting from pre-pulse effects. While a

plasma lens has a higher damage threshold than a solid-state lens, at the extreme intensities

of ELI, plasma-based optics can still acquire aberrations from nonlinear modifications to

the plasma density. As a result, neither the simple estimates for the f# provided above

nor a weakly relativistic approach will suffice [11, 12]. Said differently, optimizing a plasma

lens for ELI requires models that can capture highly nonlinear modifications to the plasma

density.

We take a hierarchical approach to optimizing the plasma lens, using a combination of

three models with a varying degree of approximation: a computationally rapid, nonlinear

thin lens model based on the beam propagation method (BPM), ponderomotive guiding

center (PGC) simulations based on the modified paraxial wave equation [29], and fully

electromagnetic 3D particle-in-cell (PIC) simulations [30]. Our starting point is the thin lens

BPM model, which allows rapid parameter scans. This model uses the fully nonlinear plasma
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density perturbation in the adiabatic limit: ωpτFWHM > 1, where ωp = (4πe2n0/me)
1/2 is the

plasma frequency and τFWHM is the full-width at half-maximum (FWHM) duration of the

laser pulse [31]. If the plasma lens is thin, f# > (∆/2w0), the laser pulse acquires a phase

φ = −i ∆

2k0γ

[
k2
p0 +

4

w4
m

r2 +∇2
⊥γ

]
(36)

on passing through the lens, where γ = (1 + |a⊥|2/2)1/2 and a⊥ = eA⊥/mec
2 is the nor-

malized, transverse vector potential of the pulse. The last term on the right hand side of

Eq. (36) represents the transverse ponderomotive expulsion of electrons from the laser pulse

path. The γ−1 coefficient includes the nonlinearity responsible for relativistic self-focusing

in the weakly nonlinear limit, |a⊥| < 1. After applying this phase, we can find the pulse

profile at any distance, modified by the nonlinear aberrations, using the beam propagation

method.

The most important parameter for the phenomena discussed in the previous sections is

the peak pulse intensity. We consider the ELI laser system and focal geometry with the

following parameters: λ = 800 nm, τFWHM = 30 fs, pulse energy U = 200 J, f# ≈ 20,

and final parabolic mirror diameter D = 0.5 m. By itself this system produces an intensity

of 4 × 1021 W/cm2. As we will see the plasma lens can focus to intensities far surpassing

this. The remaining parameters for optimizing the peak intensity are the thin plasma lens

linear focal length f = (1/4)(k0wm)2(w2
m/∆), the location of the plasma lens upstream from

the unassisted focus, the plasma lens width for which we choose ∆ = 0.5 mm, and the

background plasma density n0. The plasma lens focusing power is independent of n0, while

the nonlinear phase associated with effects such as relativistic self-focusing is proportional

to n0. Consequently nonlinear aberrations can be mitigated without sacrificing focusing

power by choosing the background density as small as possible. Here we use n0 = 1018

cm−3. Our initial condition for the BPM model is a pulse incident on the plasma lens with

the appropriate phase front curvature and amplitude acquired by the aforementioned ELI

parabolic mirror.

Fig. 11 displays the peak intensity as a function of plasma lens location, vertical axis,

and plasma lens linear focal length, horizontal axis, for linear, γ → 1, and nonlinear lenses.

In both the linear and nonlinear cases, the peak intensity can be increased by moving the

plasma lens backwards (equivalent to making the lens larger) or by decreasing the focal

length, consistent with linear optics. Even with the nonlinear aberrations, the plasma lens
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FIG. 11: Peak intensity as a function of plasma lens location, vertical axis, and plasma lens linear

focal length, horizontal axis, for linear, γ → 1, and nonlinear lenses. Even with the nonlinear

aberrations, the peak intensity achieved by the plasma lens, ≈ 2× 1022 W/cm2, surpasses that of

the unassisted mirror, ≈ 4× 1021 W/cm2.

FIG. 12: (a) On-axis intensity as a function of distance in the speed of light frame, horizontal

axis, and propagation distance, vertical axis. (b) The transverse intensity profile of the pulse at a

propagation distance near where the pulse achieves its maximum intensity.

achieves a peak intensity ≈ 5 times greater than the unassisted focus.

To examine the focusing more closely, we performed a PGC simulation of the plasma lens

focusing [29]. While these simulations take longer than the BPM, they capture the dynamic

response of the plasma lens and the non-zero lens thickness. The same initial conditions

described above were simulated with a plasma lens of focal length 0.45 mm located 2 mm

upstream from the unassisted focus. The laser pulse was initialized with a sin2 temporal
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profile. Even at this distance back from the unassisted focus, the normalized vector potential

is already a sizable |a⊥|peak = 8.7.

Fig. 12(a) displays the on-axis intensity as a function of distance in the speed of light

frame, horizontal axis, and propagation distance, vertical axis. The pulse reaches a peak

intensity of 1.3×1022 W/cm2: an intensity sufficient to ionize hydrogen-like argon or titanium

and ≈ 4 times greater than the unassisted focal intensity. The multiple bright spots in

Fig. 12(a) result from time slices within the pulse focusing at different axial locations owing

to the varying degree of nonlinearity encountered. The center of the pulse has higher power

than the front of the pulse, acquires a larger nonlinear modification to its phase, and focuses

early. The back of the pulse, on the other hand, focuses even earlier having encountered

the large ponderomotive electron density modification driven by the front of the pulse.

Additionally, at a particular time slice, each transverse location converges to the optical

axis at a different rate producing the swath-like features trailing the bright spots. Fig. 12(b)

shows the transverse intensity profile of the pulse at a propagation distance near where the

pulse achieves its maximum intensity. The brightest central spot corresponds to the center

of the pulse at its peak intensity. The dimmer spots to the right and left correspond to the

front and back of the pulse before and after their focuses respectively.

While these results are promising, the plasma lens focusing can be greatly improved. Our

continuing research will focus on further optimization by modifying the plasma lens to correct

for spherical aberrations resulting from the nonlinear laser-lens interaction, structuring the

longitudinal profile of the lens, using leaky lenses for mode cleaning, and conducting full-

format, 3D particle in cell simulations to examine non-cylindrically symmetry aberrations.

VI. RELATIVISTIC IONIZATION THEORIES

Studies of ionization of an atom in an electric field have a long history starting with

experiments and analyses for the case of a constant electric field [32, 33]. A significant

advance was made by Keldysh when he analyzed the case of a time-varying electric field

[34]. Since then numerous analytical and numerical approaches have been employed with

special emphasis on laser photoionization.

Besides interest in photoionization as a fundamental physical process there are many

applications for photoelectrons. Knowledge of the electron properties, e.g., energy and
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momentum distribution, is critical in some of these applications [4, 5].

Relativistic effects become significant either with increasing intensity or atomic number.

An example of this is vacuum polarization whereby electron-positron pairs are created when

the electric field approaches the Schwinger field. Photoionization of inner-shell electrons in

high-Z atoms is another example where relativistic effects are important.

Two analytical approaches are prevalent in studies of photoionization. There are several

interactions that must be incorporated in the analyses. The Coulomb interaction with the

nucleus and the transition-inducing interaction with the electromagnetic field predominate.

The imaginary time method (ITM) employs a Feynman propagator to evolve the final state

from the initial bound state. The propagator is expressed as eiS/~, where S =
∫
dtL is the

action and L is the Lagrangian of an electron in a plane electromagnetic wave [35]. The

action is written as a definite integral of L over time and the photoionization amplitude is

given by minimizing the imaginary part of S using the classical orbits in the barrier region.

In the second approach an exact S-matrix is defined as an overlap integral between a bound

state in the distant past and a final state in the distant future [14, 36, 37]. Using the

Klein-Gordon or the Dirac equations the overlap integrals are then re-written in the more

familiar transition probability form involving the interaction inducing perturbation. The

Volkov solution (electron wavefunction in the presence of an electromagnetic wave) plays a

special role in the S-matrix approach.

A. Critique of Analytical Approaches

The analytical approaches for determination of ionization rate incorporate many approx-

imations. Some of these are listed here.

1. Quasi-classicality

The quasi-classical nature of the main exponential factor, which is common to both

approaches, requires that the barrier width measured along the direction of the electric

field (i.e., the transverse axis of the figure-8 orbit), be large compared with the bound-state

radius.
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2. Gauge

The ITM employs the radiation gauge throughout. In analyses employing the S-matrix

approach various gauges have been considered. However, different gauges lead to different

results. The rationale for the choice of gauge has been discussed in Klaiber. It is known that

ionization rates based on ITM are in good agreement with experimental results. Therefore

it is argued that the appropriate gauge for the S-matrix approach is the one that recov-

ers the ITM rates. This is the length gauge in non-relativistic theory which generalizes

to the Göppert-Mayer gauge in relativistic theory. There is still the issue of partitioning

the Hamiltonian operator into the bound-state Hamiltonian and the interaction Hamilto-

nian. The Coulomb-corrected dressed ionization rate corresponds to the choice where the

bound-state Hamiltonian partially includes the electromagnetic field while the interaction

Hamiltonian includes the remainder. The former takes into account the interaction of elec-

tron spin with the electromagnetic field due to i) bound-state energy level shifts (i.e., Zeeman

splitting) and ii) electron spin precession in the laser field, while transition to the final state

is due to the latter.

3. Nuclear Coulomb Tail

Except for negative ions (short-range potential) the nuclear charge has a significant effect

on the wavefunction of the ejected electron and therefore on the ionization rate and is

incorporated in both methods through a multiplicative factor. The approximations involved

in analytical S-matrix approaches limit their validity to ionization potentials � 0.5 MV.

B. Ab Initio Simulations

In light of the limitations discussed above, an important part of the overall effort to de-

scribe a process such as xLIPA lies in benchmarking the ionization rate laws used in the

particle tracking calculation. For this purpose NRL has developed a suite of ab initio simu-

lation models which solve various quantum mechanical wave equations for a charged particle

in an arbitrary electromagnetic field. The wave equations that have been incorporated into

the suite are the Schrödinger, Pauli, Klein-Gordon, and Dirac equations. The entire suite

of models takes advantage of a combined OpenCL/MPI programming model that scales to
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large numbers of GPGPU devices operating in parallel. A subset of the models and results

are documented in the literature [38–40].

VII. CONCLUSIONS

The xLIPA scheme of free space electron acceleration promises to produce highly direc-

tional, GeV class electrons, by means of direct acceleration in the fields of a multi-PW class

laser pulse. In the process, nuclei of moderate-Z atoms such as argon or titanium are pro-

duced through tunneling ionization. The energy of the electrons, and charge of the nuclei,

would be record-setting for free space acceleration and optical tunneling ionization, respec-

tively. In the event that multi-EW laser pulses should become available, radiation reaction

effects lead to observable effects in the momentum distribution. One way to reduce the laser

power necessary for this is to improve the laser focus.

In order to improve the flexibility and efficacy of potential experimental configurations,

a plasma lens is proposed as a combined final focusing element and target. In the lin-

ear approximation, the enhancement in irradiance due to the plasma lens may be orders

of magnitude. When nonlinear effects are taken into account, lens aberrations limit the

enhancement to factors of several. Investigations are underway to determine whether the

aberrations can be corrected by tailoring the plasma lens density profile. In any case, the

lens density profile weights the initial particle positions in favor of high final energy.

The xLIPA scheme has several benefits, both in terms of applications, and fundamental

physics interest. One possible application is as an injector for a staged laser wakefield

acceleration system. Another is as a source of high energy electrons to be used in driving an

x-ray free electron laser, or other advanced light source. The fundamental physics of xLIPA

is rich, consisting of relativistic tunneling ionization, charged particle dynamics in extreme

fields, and eventually radiation reaction.
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